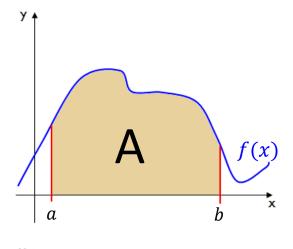
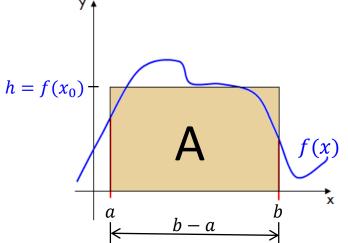
Geometrische Fragestellung





Eine geometrische Frage führt zum selben Problem.

Für die Fläche A links finde ein flächengleiches Rechteck mit der Intervalllänge als Grundseite.

Idee: Mittelwert der Funktionswerte ist die Höhe des Rechtecks.

Integralformel für Mittelwerte

Der Mittelwert m einer Funktion f(x) im Intervall [a; b] ist gegeben durch:

$$m = \frac{1}{b-a} \int_{a}^{b} f(x) dx$$

Erläuterung:

Das Integral bestimmt die Fläche unter der Kurve von f(x) im Intervall [a;b]. Fasst man dies als Fläche eines Rechtecks auf, so braucht man nur noch durch die Länge (b-a) zu teilen und erhält die gesuchte Höhe m des Rechtecks.

Rechenbeispiele

1. Berechne den Mittelwert von f(x) = x im Intervall [0; 2]. Lösung:

$$\underline{m} = \frac{1}{2 - 0} \int_{0}^{2} x \, dx = \frac{1}{2} \left[\frac{1}{2} x^{2} \right]_{0}^{2} = \frac{1}{2} (2 - 0) = 1$$

2. Berechne den Mittelwert von $f(x)=\sin(x)$ im Intervall $[0;2\pi]$.

Lösung:

$$\underline{m} = \frac{1}{2\pi - 0} \int_{0}^{2\pi} \sin(x) dx = \frac{1}{2\pi} [-\cos(x)]_{0}^{2\pi}$$
$$= \frac{1}{2\pi} (-1 - (-1)) = 0$$

Gegenüberstellung

Diskreter (endlicher) Fall:

$$m = \frac{1}{n}(x_1 + \dots + x_n)$$

Kontinuierlicher Fall:

$$m = \frac{1}{b-a} \int_{a}^{b} f(x) dx$$

Angenommen man hat im diskreten Fall sehr viele Werte zu addieren. Kann man trotzdem die Integralformel anwenden? Ja man kann! Man muss allerdings Ungenauigkeiten in Kauf nehmen!

Rechenbeispiel

Ein Messfühler misst jede Stunde, beginnend mit Stunde 0, die aktuelle Umgebungstemperatur in einem Kühlraum. Während der ersten 20 Stunden wird der Temperaturverlauf durch $f(t) = 20 - 0.05t^2$ wiedergegeben.

Bestimme die Durchschnittstemperatur innerhalb der ersten 20 Stunden (also bis t=20) zunächst mit der Integralformel.

Bestimmen Sie nun den exakten Wert mit dem GTR und vergleichen Sie die Ergebnisse.

Lösung

Durchschnittswert mit der Integralformel:

Hierbei entstehen Ungenauigkeiten!

$$m = \frac{1}{20 - 0} \int_{0}^{20} (20 - 0.05x^{2}) dx \approx 13.3$$

Ergebnis: Die Durchschnittstemperatur während der ersten 20 Stunden beträgt näherungsweise(!) 13,3°C.

Anmerkungen

Den genauen Wert erhält man mit dem GTR über sum(seq(Y₁,X,0,20))/21 gefolgt von ENTER.

Die Funktion sum erhält man über 2ND LIST im Menü MATH und die Funktion seg erhält man über 2ND LIST im Menü OPS.

Der genaue Wert beträgt 13,16°C!

Gegenüber dem Wert der Integralformel hat man eine Abweichung von etwa 0.167° C.

Man muss von Fall zu Fall entscheiden, ob man solche Abweichungen in Kauf nehmen kann oder nicht.

Aufgabe

Eine Bakterienkultur vermehrt sich in den ersten 10 Stunden seit der Beobachtung exponentiell nach dem Gesetz $f(t) = 2 \cdot e^{0,2t}$. Hierbei wird t in Stunden und f(t) in Einheiten von 10000 gemessen.

Welche Durchschnittsgröße hatte die Bakterienkultur zwischen der 4ten und der 8ten Stunde?

Lösung:
$$m = \frac{1}{8-4} \int_4^8 2e^{0.2t} dt \approx 6.82$$
 (GTR: fnInt(Y₁,X,4,8)/4)

Ergebnis: Zwischen der 4ten und der 8ten Stunde gab es durchschnittlich 68200 Bakterien.